Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Environ Int ; 185: 108510, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38460241

RESUMO

Ultrafine particles (UFP, those with diameters ≤ 100 nm), have been reported to potentially penetrate deeply into the respiratory system, translocate through the alveoli, and affect various organs, potentially correlating with increased mortality. The aim of this study is to assess long-term trends (5-11 years) in mostly urban UFP concentrations based on measurements of particle number size distributions (PNSD). Additionally, concentrations of other pollutants and meteorological variables were evaluated to support the interpretations. PNSD datasets from 12 urban background (UB), 5 traffic (TR), 3 suburban background (SUB) and 1 regional background (RB) sites in 15 European cities and 1 in the USA were evaluated. The non-parametric Theil-Sen's method was used to detect monotonic trends. Meta-analyses were carried out to assess the overall trends and those for different environments. The results showed significant decreases in NO, NO2, BC, CO, and particle concentrations in the Aitken (25-100 nm) and the Accumulation (100-800 nm) modes, suggesting a positive impact of the implementation of EURO 5/V and 6/VI vehicle standards on European air quality. The growing use of Diesel Particle Filters (DPFs) might also have clearly reduced exhaust emissions of BC, PM, and the Aitken and Accumulation mode particles. However, as reported by prior studies, there remains an issue of poor control of Nucleation mode particles (smaller than 25 nm), which are not fully reduced with current DPFs, without emission controls for semi-volatile organic compounds, and might have different origins than road traffic. Thus, contrasting trends for Nucleation mode particles were obtained across the cities studied. This mode also affected the UFP and total PNC trends because of the high proportion of Nucleation mode particles in both concentration ranges. It was also found that the urban temperature increasing trends might have also influenced those of PNC, Nucleation and Aitken modes.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Monitoramento Ambiental/métodos , Europa (Continente) , Tamanho da Partícula , Material Particulado/análise , Emissões de Veículos/análise
2.
Environ Int ; 185: 108553, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38460240

RESUMO

A reliable determination of equivalent black carbon (eBC) mass concentrations derived from filter absorption photometers (FAPs) measurements depends on the appropriate quantification of the mass absorption cross-section (MAC) for converting the absorption coefficient (babs) to eBC. This study investigates the spatial-temporal variability of the MAC obtained from simultaneous elemental carbon (EC) and babs measurements performed at 22 sites. We compared different methodologies for retrieving eBC integrating different options for calculating MAC including: locally derived, median value calculated from 22 sites, and site-specific rolling MAC. The eBC concentrations that underwent correction using these methods were identified as LeBC (local MAC), MeBC (median MAC), and ReBC (Rolling MAC) respectively. Pronounced differences (up to more than 50 %) were observed between eBC as directly provided by FAPs (NeBC; Nominal instrumental MAC) and ReBC due to the differences observed between the experimental and nominal MAC values. The median MAC was 7.8 ± 3.4 m2 g-1 from 12 aethalometers at 880 nm, and 10.6 ± 4.7 m2 g-1 from 10 MAAPs at 637 nm. The experimental MAC showed significant site and seasonal dependencies, with heterogeneous patterns between summer and winter in different regions. In addition, long-term trend analysis revealed statistically significant (s.s.) decreasing trends in EC. Interestingly, we showed that the corresponding corrected eBC trends are not independent of the way eBC is calculated due to the variability of MAC. NeBC and EC decreasing trends were consistent at sites with no significant trend in experimental MAC. Conversely, where MAC showed s.s. trend, the NeBC and EC trends were not consistent while ReBC concentration followed the same pattern as EC. These results underscore the importance of accounting for MAC variations when deriving eBC measurements from FAPs and emphasize the necessity of incorporating EC observations to constrain the uncertainty associated with eBC.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Aerossóis/análise , Estações do Ano , Fuligem/análise , Carbono/análise , Material Particulado/análise
3.
ACS Environ Au ; 4(1): 12-30, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38250341

RESUMO

Residential wood combustion contributing to airborne particulate matter (PM10) was studied for 1 year at two sites in the village of Melpitz. Significant excess pollution was observed at the Melpitz center compared to that at the TROPOS research station Melpitz reference site, situated only 700 m away. Local concentration increments at the village site for the combustion PM constituents organic carbon, elemental carbon, levoglucosan, and benzo[a]pyrene were determined under appropriate wind directions, and their winter mean values were 0.7 µg m-3, 0.3 µg m-3, 0.1 µg m-3, and 0.4 ng m-3, representing relative increases over the regional background concentration of 24, 70, 61, and 107%, respectively. Yearly, weekly, and diurnal profiles of village increments suggest residential heating as the dominant source of this excess pollution, mainly originating from wood combustion. Receptor modeling using positive matrix factorization quantified 4.5 µg m-3 wood combustion PM at the village site, representing an increment of 1.9 µg m-3 and an increase of ∼75% over the 2.6 µg m-3 regional background wood combustion PM. This increment varied with season, temperature, and boundary layer height and reached daily mean values of 4-6 µg m-3 during unfavorable meteorological conditions. Potential health effects were estimated and resulted in an all-cause mortality from short-term exposure to wood combustion PM of 2.1 cases per 100,000 inhabitants and year for areas with similar wood smoke levels as observed in Melpitz. The excess cancer risk from the concentrations of polycyclic aromatic hydrocarbons was 6.4 per 100,000. For both health metrics, the very local contributions from the village itself were about 40-50%, indicating a strong potential for mitigation through local-scale policies. A compilation of literature data demonstrates wood combustion to represent a major source of PM pollution in Germany, with average winter-time contributions of 10-20%. The present study quantifies the negative impacts of heating with wood in rural residential areas, where the continuous monitoring of air quality is typically lacking. Further regulation of this PM source is warranted in order to protect human health.

4.
Int J Public Health ; 68: 1606096, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38045993

RESUMO

Objectives: This paper presents the study design of the Berlin-Brandenburg Air study (BEAR-study). We measure air quality in Berlin and Brandenburg before and after the relocation of aircraft (AC) traffic from Tegel (TXL) airport to the new Berlin-Brandenburg airport (BER) and investigate the association of AC-related ultrafine particles (UFP) with health outcomes in schoolchildren. Methods: The BEAR-study is a natural experiment examining schoolchildren attending schools near TXL and BER airports, and in control areas (CA) away from both airports and associated air corridors. Each child undergoes repeated school-based health-examinations. Total particle number concentration (PNC) and meteorological parameters are continuously monitored. Submicrometer particle number size distribution, equivalent black carbon, and gas-phase pollutants are collected from long-term air quality monitoring stations. Daily source-specific UFP concentrations are modeled. We will analyze short-term effects of UFP on respiratory, cardiovascular, and neurocognitive outcomes, as well as medium and long-term effects on lung growth and cognitive development. Results: We examined 1,070 children (as of 30 November 2022) from 16 schools in Berlin and Brandenburg. Conclusion: The BEAR study increases the understanding of how AC-related UFP affect children's health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Criança , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Aeroportos , Berlim , Material Particulado/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Monitoramento Ambiental
5.
Environ Int ; 178: 108081, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37451041

RESUMO

This study analyzed the variability of equivalent black carbon (eBC) mass concentrations and their sources in urban Europe to provide insights into the use of eBC as an advanced air quality (AQ) parameter for AQ standards. This study compiled eBC mass concentration datasets covering the period between 2006 and 2022 from 50 measurement stations, including 23 urban background (UB), 18 traffic (TR), 7 suburban (SUB), and 2 regional background (RB) sites. The results highlighted the need for the harmonization of eBC measurements to allow for direct comparisons between eBC mass concentrations measured across urban Europe. The eBC mass concentrations exhibited a decreasing trend as follows: TR > UB > SUB > RB. Furthermore, a clear decreasing trend in eBC concentrations was observed in the UB sites moving from Southern to Northern Europe. The eBC mass concentrations exhibited significant spatiotemporal heterogeneity, including marked differences in eBC mass concentration and variable contributions of pollution sources to bulk eBC between different cities. Seasonal patterns in eBC concentrations were also evident, with higher winter concentrations observed in a large proportion of cities, especially at UB and SUB sites. The contribution of eBC from fossil fuel combustion, mostly traffic (eBCT) was higher than that of residential and commercial sources (eBCRC) in all European sites studied. Nevertheless, eBCRC still had a substantial contribution to total eBC mass concentrations at a majority of the sites. eBC trend analysis revealed decreasing trends for eBCT over the last decade, while eBCRC remained relatively constant or even increased slightly in some cities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Aerossóis/análise , Poluição do Ar/análise , Europa (Continente) , Estações do Ano , Fuligem/análise , Carbono/análise , Material Particulado/análise
6.
Sci Total Environ ; 898: 165466, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451445

RESUMO

This study aims to picture the phenomenology of urban ambient total lung deposited surface area (LDSA) (including head/throat (HA), tracheobronchial (TB), and alveolar (ALV) regions) based on multiple path particle dosimetry (MPPD) model during 2017-2019 period collected from urban background (UB, n = 15), traffic (TR, n = 6), suburban background (SUB, n = 4), and regional background (RB, n = 1) monitoring sites in Europe (25) and USA (1). Briefly, the spatial-temporal distribution characteristics of the deposition of LDSA, including diel, weekly, and seasonal patterns, were analyzed. Then, the relationship between LDSA and other air quality metrics at each monitoring site was investigated. The result showed that the peak concentrations of LDSA at UB and TR sites are commonly observed in the morning (06:00-8:00 UTC) and late evening (19:00-22:00 UTC), coinciding with traffic rush hours, biomass burning, and atmospheric stagnation periods. The only LDSA night-time peaks are observed on weekends. Due to the variability of emission sources and meteorology, the seasonal variability of the LDSA concentration revealed significant differences (p = 0.01) between the four seasons at all monitoring sites. Meanwhile, the correlations of LDSA with other pollutant metrics suggested that Aitken and accumulation mode particles play a significant role in the total LDSA concentration. The results also indicated that the main proportion of total LDSA is attributed to the ALV fraction (50 %), followed by the TB (34 %) and HA (16 %). Overall, this study provides valuable information of LDSA as a predictor in epidemiological studies and for the first time presenting total LDSA in a variety of European urban environments.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise , Emissões de Veículos/análise , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Poeira , Pulmão , Europa (Continente) , Tamanho da Partícula
7.
PNAS Nexus ; 2(5): pgad124, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37152675

RESUMO

In the Arctic, new particle formation (NPF) and subsequent growth processes are the keys to produce Aitken-mode particles, which under certain conditions can act as cloud condensation nuclei (CCNs). The activation of Aitken-mode particles increases the CCN budget of Arctic low-level clouds and, accordingly, affects Arctic climate forcing. However, the growth mechanism of Aitken-mode particles from NPF into CCN range in the summertime Arctic boundary layer remains a subject of current research. In this combined Arctic cruise field and modeling study, we investigated Aitken-mode particle growth to sizes above 80 nm. A mechanism is suggested that explains how Aitken-mode particles can become CCN without requiring high water vapor supersaturation. Model simulations suggest the formation of semivolatile compounds, such as methanesulfonic acid (MSA) in fog droplets. When the fog droplets evaporate, these compounds repartition from CCNs into the gas phase and into the condensed phase of nonactivated Aitken-mode particles. For MSA, a mass increase factor of 18 is modeled. The postfog redistribution mechanism of semivolatile acidic and basic compounds could explain the observed growth of >20 nm h-1 for 60-nm particles to sizes above 100 nm. Overall, this study implies that the increasing frequency of NPF and fog-related particle processing can affect Arctic cloud properties in the summertime boundary layer.

8.
Environ Int ; 172: 107744, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36696793

RESUMO

The 2017-2019 hourly particle number size distributions (PNSD) from 26 sites in Europe and 1 in the US were evaluated focusing on 16 urban background (UB) and 6 traffic (TR) sites in the framework of Research Infrastructures services reinforcing air quality monitoring capacities in European URBAN & industrial areaS (RI-URBANS) project. The main objective was to describe the phenomenology of urban ultrafine particles (UFP) in Europe with a significant air quality focus. The varying lower size detection limits made it difficult to compare PN concentrations (PNC), particularly PN10-25, from different cities. PNCs follow a TR > UB > Suburban (SUB) order. PNC and Black Carbon (BC) progressively increase from Northern Europe to Southern Europe and from Western to Eastern Europe. At the UB sites, typical traffic rush hour PNC peaks are evident, many also showing midday-morning PNC peaks anti-correlated with BC. These peaks result from increased PN10-25, suggesting significant PNC contributions from nucleation, fumigation and shipping. Site types to be identified by daily and seasonal PNC and BC patterns are: (i) PNC mainly driven by traffic emissions, with marked correlations with BC on different time scales; (ii) marked midday/morning PNC peaks and a seasonal anti-correlation with PNC/BC; (iii) both traffic peaks and midday peaks without marked seasonal patterns. Groups (ii) and (iii) included cities with high insolation. PNC, especially PN25-800, was positively correlated with BC, NO2, CO and PM for several sites. The variable correlation of PNSD with different urban pollutants demonstrates that these do not reflect the variability of UFP in urban environments. Specific monitoring of PNSD is needed if nanoparticles and their associated health impacts are to be assessed. Implementation of the CEN-ACTRIS recommendations for PNSD measurements would provide comparable measurements, and measurements of <10 nm PNC are needed for full evaluation of the health effects of this size fraction.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado/análise , Poluentes Atmosféricos/análise , Emissões de Veículos/análise , Tamanho da Partícula , Monitoramento Ambiental , Poluição do Ar/análise , Europa (Continente) , Cidades , Fuligem
9.
Part Fibre Toxicol ; 19(1): 61, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109745

RESUMO

BACKGROUND: Exposure to air pollutants is one of the major environmental health risks faced by populations globally. Information about inhaled particle deposition dose is crucial in establishing the dose-response function for assessing health-related effects due to exposure to air pollution. OBJECTIVE: This study aims to quantify the respiratory tract deposition (RTD) of equivalent black carbon (BC) particles in healthy young adults during a real-world commuting scenario, analyze factors affecting RTD of BC, and provide key parameters for the assessment of RTD. METHODS: A novel in situ method was applied to experimentally determine the RTD of BC particles among subjects in the highly polluted megacity of Metro Manila, Philippines. Exposure measurements were made for 40 volunteers during public transport and walking. RESULTS: The observed BC exposure concentration was up to 17-times higher than in developed regions. The deposition dose rate (DDR) of BC was up to 3 times higher during commute inside a public transport compared to walking (11.6 versus 4.4 µg hr-1, respectively). This is twice higher than reported in similar studies. The average BC mass deposition fraction (DF) was found to be 43 ± 16%, which can in large be described by individual factors and does not depend on gender. CONCLUSIONS: Commuting by open-sided public transport, commonly used in developing regions, poses a significant health risk due to acquiring extremely high doses of carcinogenic traffic-related pollutants. There is an urgent need to drastically update air pollution mitigation strategies for reduction of dangerously high emissions of BC in urban setting in developing regions. The presented mobile measurement set-up to determine respiratory tract deposition dose is a practical and cost-effective tool that can be used to investigate respiratory deposition in challenging environments.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Carbono , Humanos , Filipinas , Sistema Respiratório , Fuligem/análise , Fuligem/toxicidade , Meios de Transporte , Emissões de Veículos/análise , Emissões de Veículos/toxicidade , Adulto Jovem
10.
Viruses ; 14(7)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35891477

RESUMO

The airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as a potential pandemic challenge, especially in poorly ventilated indoor environments, such as certain hospitals, schools, public buildings, and transports. The impacts of meteorological parameters (temperature and humidity) and physical property (droplet size) on the airborne transmission of coronavirus in indoor settings have been previously investigated. However, the impacts of chemical properties of viral droplets and aerosol particles (i.e., chemical composition and acidity (pH)) on viability and indoor transmission of coronavirus remain largely unknown. Recent studies suggest high organic content (proteins) in viral droplets and aerosol particles supports prolonged survival of the virus by forming a glassy gel-type structure that restricts the virus inactivation process under low relative humidity (RH). In addition, the virus survival was found at neutral pH, and inactivation was observed to be best at low (<5) and high pH (>10) values (enveloped bacteriophage Phi6). Due to limited available information, this article illustrates an urgent need to research the impact of chemical properties of exhaled viral particles on virus viability. This will improve our fundamental understanding of indoor viral airborne transmission mechanisms.


Assuntos
COVID-19 , SARS-CoV-2 , Aerossóis , Humanos , Viabilidade Microbiana , Aerossóis e Gotículas Respiratórios
11.
Environ Sci Technol ; 56(13): 9613-9622, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35730737

RESUMO

The hygroscopicity of marine aerosols may largely impact particle optical properties, cloud activation ability, and consequently the global climate system. This study highlights findings from real-time hygroscopicity and chemical composition measurements in three open-ocean cruises over the Atlantic Ocean. Spatial variations in hygroscopicity (κ) for marine boundary layer particles (≤300 nm) were provided for the first time covering nearly 100° of the latitude over the Atlantic Ocean, ranging from 0.14 to 1.06. Externally mixed particles with remarkably low hygroscopicity (0.14-0.16) were observed near the equator influenced by biomass burning emissions transported from Africa. For marine aerosols, a positive linear correlation evidently existed between κ and wind speed within a range of 5-15 m/s even for nanometer particles. A closure study shows that the measured κ of 300 nm particles is well explained by the bulk chemical composition. A good negative correlation between measured κ and the organic mass fraction in PM1 for marine aerosols was found (slope = -2.26, R2 = 0.44), while a different linear relationship appeared for continental aerosols at several sites (slope = -0.47, R2 = 0.77). Accordingly, we provide a parameterization method to estimate bulk aerosol hygroscopicity both in continental and marine environments using particulate organic fractions.


Assuntos
Molhabilidade , Aerossóis/química , Oceano Atlântico , Biomassa , Tamanho da Partícula
12.
Sci Total Environ ; 811: 151364, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34740668

RESUMO

Atmospheric particles are important reaction vessels for multiphase chemistry. We conducted a meta-analysis of previous field observations in various environments (includes ocean, urban and rural regions), showing that particle hygroscopicity inhomogeneity (PHI) is ubiquitous for the continental atmospheric particles, in which a considerable part of the particulate matters is hydrophobic (10%-33% on average). However, the effects of PHI in quantifying the uptake process of reactive gases are still unclear. Here, taking N2O5 uptake as an example, we showed that using a laboratory-based parameterization scheme without considering the PHI might result in a misestimation of uptake rate coefficient, especially under low ambient relative humidity (RH). Such misestimation may be caused by the differences of the uptake coefficients, as well as the proportion of surface area concentration (SA) between hydrophilic and hydrophobic particles. We suggested that the PHI should be well-considered in establishing the reactive traces gases heterogeneous uptake parameterizations.


Assuntos
Gases , Material Particulado , Aerossóis , Umidade , Material Particulado/análise , Molhabilidade
13.
J Expo Sci Environ Epidemiol ; 32(4): 604-614, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34455418

RESUMO

BACKGROUND: Data from extensive mobile measurements (MM) of air pollutants provide spatially resolved information on pedestrians' exposure to particulate matter (black carbon (BC) and PM2.5 mass concentrations). OBJECTIVE: We present a distributional regression model in a Bayesian framework that estimates the effects of spatiotemporal factors on the pollutant concentrations influencing pedestrian exposure. METHODS: We modeled the mean and variance of the pollutant concentrations obtained from MM in two cities and extended commonly used lognormal models with a lognormal-normal convolution (logNNC) extension for BC to account for instrument measurement error. RESULTS: The logNNC extension significantly improved the BC model. From these model results, we found local sources and, hence, local mitigation efforts to improve air quality, have more impact on the ambient levels of BC mass concentrations than on the regulated PM2.5. SIGNIFICANCE: Firstly, this model (logNNC in bamlss package available in R) could be used for the statistical analysis of MM data from various study areas and pollutants with the potential for predicting pollutant concentrations in urban areas. Secondly, with respect to pedestrian exposure, it is crucial for BC mass concentration to be monitored and regulated in areas dominated by traffic-related air pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Pedestres , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Teorema de Bayes , Carbono/análise , Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Humanos , Material Particulado/análise , Fuligem/análise , Emissões de Veículos/análise
14.
Indoor Air ; 31(3): 818-831, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33247488

RESUMO

More representative data on source-specific particle number emission rates and associated exposure in European households are needed. In this study, indoor and outdoor particle number size distributions (10-800 nm) were measured in 40 German households under real-use conditions in over 500 days. Particle number emission rates were derived for around 800 reported indoor source events. The highest emission rate was caused by burning candles (5.3 × 1013  h-1 ). Data were analyzed by the single-parameter approach (SPA) and the indoor aerosol dynamics model approach (IAM). Due to the consideration of particle deposition, coagulation, and time-dependent ventilation rates, the emission rates of the IAM approach were about twice as high as those of the SPA. Correction factors are proposed to convert the emission rates obtained from the SPA approach into more realistic values. Overall, indoor sources contributed ~ 56% of the daily-integrated particle number exposure in households under study. Burning candles and opening the window leads to seasonal differences in the contributions of indoor sources to residential exposure (70% and 40% in the cold and warm season, respectively). Application of the IAM approach allowed to attribute the contributions of outdoor particles to the penetration through building shell and entry through open windows (26% and 15%, respectively).


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Monitoramento Ambiental , Material Particulado , Aerossóis , Características da Família , Humanos , Tamanho da Partícula , Estações do Ano , Ventilação
15.
Artigo em Inglês | MEDLINE | ID: mdl-33218091

RESUMO

The first case of the coronavirus disease 2019 (COVID-19), the novel contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was reported in Wuhan, China in December 2019 [...].


Assuntos
Microbiologia do Ar , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Hospitais , Controle de Infecções , Casas de Saúde , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , Betacoronavirus , COVID-19 , Humanos , SARS-CoV-2
16.
Environ Sci Technol ; 54(10): 5973-5979, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32343120

RESUMO

The oxidation of nitric oxide to nitrogen dioxide by hydroperoxy (HO2) and organic peroxy radicals (RO2) is responsible for the chemical net ozone production in the troposphere and for the regeneration of hydroxyl radicals, the most important oxidant in the atmosphere. In Summer 2014, a field campaign was conducted in the North China Plain, where increasingly severe ozone pollution has been experienced in the last years. Chemical conditions in the campaign were representative for this area. Radical and trace gas concentrations were measured, allowing for calculating the turnover rates of gas-phase radical reactions. Therefore, the importance of heterogeneous HO2 uptake on aerosol could be experimentally determined. HO2 uptake could have suppressed ozone formation at that time because of the competition with gas-phase reactions that produce ozone. The successful reduction of the aerosol load in the North China Plain in the last years could have led to a significant decrease of HO2 loss on particles, so that ozone-forming reactions could have gained importance in the last years. However, the analysis of the measured radical budget in this campaign shows that HO2 aerosol uptake did not impact radical chemistry for chemical conditions in 2014. Therefore, reduced HO2 uptake on aerosol since then is likely not the reason for the increasing number of ozone pollution events in the North China Plain, contradicting conclusions made from model calculations reported in the literature.


Assuntos
Ozônio/análise , Aerossóis/análise , Atmosfera , China , Radical Hidroxila
17.
Sci Total Environ ; 703: 134570, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31753501

RESUMO

Quantification of the exposure of urban residents to ultrafine particle number concentrations (UFP) is challenging due to its high spatial and temporal variability. Hence, statistical models, e.g. generalized additive models (GAM), may be used to estimate time series or spatial characteristics of UFP. The GAM approach allows the representation of non-linear relations of a response variable with explanatory variables without the need to pre-define model functions. Up to now, GAMs were usually fitted to UFP data from a single site or from mobile measurement campaigns with limited temporal coverage. In this study, GAMs were used to determine UFP, accumulation mode particle (ACC) and total number concentration (TNC) at five urban sites in the cities of Leipzig and Dresden, Germany for the period 2011-2013. As explanatory variables, reanalysis data sets of meteorological quantities, urban geometry and traffic volume data were evaluated. Variables causing concurvity, which is the equivalent to collinearity in non-linear model approaches, were neglected to guarantee the interpretability of the final models. The models were then validated in a ten-fold cross-validation approach. The final models contained smooth functions for the building surface fraction, planetary boundary layer height, traffic volume, air temperature, wind direction, atmospheric pressure, relative humidity, global radiation and precipitation. Adjusted coefficients of determination (R2adj.) for the final models were R2adj. = 0.44 for UFP, R2adj. = 0.51 for ACC and R2adj. = 0.48 for TNC. Coefficients of determination of the cross-validation were in a similar range (0.44 for UFP, 0.51 for ACC, 0.49 for TNC). Finally, our study shows that GAMs are able to represent important processes that contribute to the particle number concentration from the smooth functions, i.e. emission, dilution, nucleation, deposition and long-range transport.

18.
Environ Sci Technol ; 53(7): 3517-3525, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30811937

RESUMO

As nitrous acid (HONO) photolysis is an important source of hydroxyl radical (OH), apportionment of the ambient HONO sources is necessary to better understand atmospheric oxidation. Based on the data HONO-related species and various parameters measured during the one-month campaign at Wangdu (a rural site in North China plain) in summer 2014, a box model was adopted with input of current literature parametrizations for various HONO sources (nitrogen dioxide heterogeneous conversion, photoenhanced conversion, photolysis of adsorbed nitric acid and particulate nitrate, acid displacement, and soil emission) to reveal the relative importance of each source at the rural site. The simulation results reproduced the observed HONO production rates during noontime in general but with large uncertainty from both the production and destruction terms. NO2 photoenhanced conversion and photolysis of particulate nitrate were found to be the two major mechanisms with large potential of HONO formation but the associated uncertainty may reduce their importance to be nearly negligible. Soil nitrite was found to be an important HONO source during fertilization periods, accounted for (80 ± 6)% of simulation HONO during noontime. For some episodes of the biomass burning, only the NO2 heterogeneous conversion to HONO was promoted significantly. In summary, the study of the HONO budget is still far from closed, which would require a significant effort on both the accurate measurement of HONO and the determination of related kinetic parameters for its production pathways.


Assuntos
Dióxido de Nitrogênio , Ácido Nitroso , China , Nitritos , Óxidos de Nitrogênio
19.
Environ Pollut ; 248: 295-303, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30802743

RESUMO

In this study, we present the development of a mobile system to measure real-world total respiratory tract deposition of inhaled ambient black carbon (BC). Such information can be used to supplement the existing knowledge on air pollution-related health effects, especially in the regions where the use of standard methods and intricate instrumentation is limited. The study is divided in two parts. Firstly, we present the design of portable system and methodology to evaluate the exhaled air BC content. We demonstrate that under real-world conditions, the proposed system exhibit negligible particle losses, and can additionally be used to determine the minute ventilation. Secondly, exemplary experimental data from the system is presented. A feasibility study was conducted in the city of La Paz, Bolivia. In a pilot experiment, we found that the cumulative total respiratory tract deposition dose over 1-h commuting trip would result in approximately 2.6 µg of BC. This is up to 5 times lower than the values obtained from conjectural approach (e.g. using physical parameters from previously reported worksheets). Measured total respiratory tract deposited BC fraction varied from 39% to 48% during walking and commuting inside a micro-bus, respectively. To the best of our knowledge, no studies focusing on experimental determination of real-world deposition dose of BC have been performed in developing regions. This can be especially important because the BC mass concentration is significant and determines a large fraction of particle mass concentration. In this work, we propose a potential method, recommendations, as well as the limitations in establishing an easy and relatively cheap way to estimate the respiratory tract deposition of BC.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Exposição por Inalação/análise , Material Particulado/análise , Poluição do Ar/estatística & dados numéricos , Bolívia , Carbono , Cidades , Humanos , Exposição por Inalação/estatística & dados numéricos , Sistema Respiratório/química , Fuligem/análise , Meios de Transporte
20.
Sci Total Environ ; 663: 265-274, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30711593

RESUMO

Recent studies demonstrate that Black Carbon (BC) pollution in economically developing megacities remain higher than the values, which the World Health Organization considers to be safe. Despite the scientific evidence of the degrees of BC exposure, there is still a lack of understanding on how the severe levels of BC pollution affect human health in these regions. We consider information on the respiratory tract deposition dose (DD) of BC to be essential in understanding the link between personal exposure to air pollutants and corresponding health effects. In this work, we combine data on fine and ultrafine refractory particle number concentrations (BC proxy), and activity patterns to derive the respiratory tract deposited amounts of BC particles for the population of the highly polluted metropolitan area of Manila, Philippines. We calculated the total DD of refractory particles based on three metrics: refractory particle number, surface area, and mass concentrations. The calculated DD of total refractory particle number in Metro Manila was found to be 1.6 to 17 times higher than average values reported from Europe and the U.S. In the case of Manila, ultrafine particles smaller than 100 nm accounted for more than 90% of the total deposited refractory particle dose in terms of particle number. This work is a first attempt to quantitatively evaluate the DD of refractory particles and raise awareness in assessing pollution-related health effects in developing megacities. We demonstrate that the majority of the population may be highly affected by BC pollution, which is known to have negative health outcomes if no actions are taken to mitigate its emission. For the governments of such metropolitan areas, we suggest to revise currently existing environmental legislation, raise public awareness, and to establish supplementary monitoring of black carbon in parallel to already existing PM10 and PM2.5 measures.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Exposição por Inalação/análise , Material Particulado/análise , Adolescente , Adulto , Criança , Cidades , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho da Partícula , Filipinas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...